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One-side riddled basin below and beyond the blowout bifurcation
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In this Rapid Comunication we report a phenomenon ofie-sideriddled basin where one side of the basin
of attraction of an attractor on an invariant subspd&S) is globally riddled, while the other side is only
locally riddled. This kind of basin appears due to the symmetry breaking with respect to the ISS. This one-side
riddled basin can even persiseyondthe blowout bifurcation, contrary to the previously reported riddled
basins which exist onlpelowthe blowout transition. An experimental situation where this phenomenon can be
expected is proposed.

PACS numbegs): 05.45.Ac, 05.45.Ra, 05.45.Xt

Recently, systems with an invariant subsp&®S at- A UPO on an ISS can lose its transverse stability through
tracted a lot of research interddt-10]. The existence of an various local bifurcations. Possible candidates are pitch-fork
ISS typically requires that the system has some kind of sym6], period-doubling8,9], transcritical, or Hopf bifurcations
metry. A situation where a symmetry can appear naturally i§10]. All of these cases have been reported except the
the synchronization of coupled identical chaotic units. Therranscritical ong11]. In the previous studies of the riddled
synchronization phenomena have been extensively studied {fpsin, the systems used are of much stronger symmetry than
and biological systems, and secure communication. CoMsase of chaos synchronization, symmetric coupling is usually
plete, generalized, phase, and lag synchronizations of chaolifseq \while using of identical chaotic units is already enough
oscillators have been described theoretically and observ produce an ISS, independently on the coupling method. In
ex?:%rrlrgggttg::qyglp;olszlessing an ISS, a central question is tﬁEis Rapid Communication, we address the situation when
transverse stability of the ISS, i.e., whether an orbit startin € unnecessary symmetry_ls rele_ased. To |Ilus_trate our find-

ng, we use a simple two-dimensional map which possesses

from the vicinity of ISS will finally approach it or diverge ) . o
from it. A quantity measuring this stability is the transverse@" 1SS while the whole system is asymmetric with respect to

Lyapunov exponentTLE), which measures the growth rate this ISS. Due to_this asymmetry, the periodic sat_jdles embed-
of transverse perturbations. If the TLE is negative, a transded in a chaotic attractor in the ISS lose their transverse

verse perturbation will decrease gradually and the ISS i§tability through transcritical bifurcation. We found that the
transversely stable. Otherwise, it is unstable. The problerﬁas'n of attraction of the chaotic attractor on the ISS can be
turns out to be quite complex when there is a chaotic attracglobally riddled from one face while only locally riddled
tor on the ISS, since the value of TLE depends in a fundfrom another face. This type of riddled basin can even be
mental way on the choice of an invariant measure on théhaintainedafter the blowout bifurcation. _
attractor[13]. It is known that invariant measures are not We consider the following general class of dynamical sys-
unique for a chaotic attractor due to the fact that there aré&ms popularly used in the literaturg&7]:

uncountably many unstable periodic orb{tdPOg embed-
ded in it[14]. Corresponding to each UPO, there is an in- i
variant measure whose support is on this orbit. To each in- _ : :

variant measure corresponds a TLE. In general, all of these Yn+1=90P)yn+ (high-order terms iny,).

TLEs have different values. With a change of somerma) | the former works[6,7], only odd powers ofy, were
parametef5], e.g., the coupling strength for the coupled sys-present on the right-hand side of the second equation in Eq.
tems, these TLEs will change their signs at different valueg1) |n that case, the system has the symmgtry—y. The

of the parameter. The point where th@ximalTLE crosses  gymmetryy— —y is appropriate for the coupled chaotic
zero is called a riddling bifurcatiof]. Below this bifurca-  njts when the coupling is symmetii8,9]. Obviously, this
tion, the attractor on ISS is asymptotically stable and thesymmetry is not necessary for the presence of theylS8.
coupled systems are strongly synchronized. After this blfurSO, we would like to include the even powers wf and

cation, it is only an attractor in the sense of MilN@15],  glease this symmetry. For simplicity and easiness of illus-
i.e., a dense set of points escape from its vicinity. Its basin of,ation. a two-dimensional version of E€l) is used
attraction can be locally or globally riddled depending on the

Xn+ 1= f(Xy) + (high-order terms iny,),

global dynamic of the systerf4,5,9. We have the weak Xn+1=2x(mod 1)+ qy?,
synchronization in this region. The parameter value where )
A, which corresponds to the natural measure of the whole Yns1=(pXa+a)yn(1+by,—cy?),

chaotic attractor, is equal to zero is called a blowout bifur-

cation[4]. Beyond it, the whole chaotic attractor on the ISSwherep, g, a, b, andc are positive real constants.
becomes unstable in average and the coupled chaotic units For any choice of the control parameters, we hgye
become desynchronized. =0 for n>1 if yo=0, i.e.,y,=0 is an ISS of the whole
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FIG. 1. Bifurcation diagram for the case qd=0: y,.1
=g(yn)=ayn(1+by,—cy?). FIG. 2. Phase diagram for the two-dimsensional system. The

curvesbl, rd, andsn are for the blowout, riddling, and saddle-

system. On this ISS, the system possesses a chaotic attrachgf€-like bifurcations, respectively.

from the Bernoulli shift mag (x) =2x(mod 1). Throughout
this paper, the value3=0.001,b=0.5, andc=0.3 are kept the transcritical bifurcation are asymmetrical with respect to
fixed anda andp are used as control parameters.. y=0. It is just this asymmetry that leads to the one-side
Let us first briefly review the dynamics in the cgse0  riddled basin described below. This low level of symmetry
(Fig. 1), where the dynamics of the variablg, becomes (or say degeneragyalso implies that the one-side riddled
uncoupled from that ok,,. With increasing of the parameter basin is expected to be observed more commonly in contrast
a, the fixed pointy,= 0 loses its stability through a transcriti- to other cases of riddled basin.
cal bifurcation ataz=1.0. In the regiory<0, another stable The TLE of the chaotic attractor on the ISS is giv-
fixed point branches off smoothly frogn=0 at the transcriti-  en by A, = [ In|px+a|p(x)dx=f7In|px+aldx=1/p(p In p
cal bifurcation. This is the soft branch. In the regppr0, a  —alna—p+a). The blowout bifurcation occurs as, =0,
pair of fixed points appears simultaneoushagt=0.83, i.e.,  which defines the curveIn p—alna—p-+a=0 in the param-
prior to the loss of the stability of=0 ata=1.0. This is the  eter plane p,a) (see Fig. 2 When changing the parameters
hard branch. In the parameter interyal,,az], the system p anda, four different scenarios of blowout bifurcations can
has two coexisting attractors. One can observe hysteresfse found in this system. The attractors and their basins be-
when changing the parametarin different directions. At fore and after the bifurcations are listed in Table I.
a,=1.697, the second iteration of the critical pofa6] y* To give an example of the first scenario, let us fix the
=1.747 on the hard branch, which is one of the maximunparametema=0 and increase. For p<1, all the UPOs em-
points ofg(y) =ay(1+by—cy?), collides withy=0 which  bedded in the chaotic attractor on ISS are stable in the trans-
is on the boundary separating the basins of attraction of twe@erse direction. The chaotic attractor is asymptotically stable
attractors in the regiong>0 andy<0. Beyond this point, in this case. A is increased larger tham,= 1.0, the fixed
all the trajectories starting from the regigi»0 will finally point x,=1 in the ISS becomes unstable in the transverse
enter the regioly<0; the attractor on the hard branch ceasedlirection and a series of tonguelike structures open at the
to exist. Ata;=1.847, the first iteration of the critical point fixed point and its preimage. Points in these tongues can
y* collides with the unstable period-2 orbit which is on the escape from the vicinity of the ISS. But they will finally
boundary between the finite attractor and the attractor at inreturn there due to the global nonlinearity of the system. The
finity. After that, trajectories starting from the regign>0 basin of attraction of the chaotic attractor on the ISS is only
will escape eventually to infinity. Similar boundary crises for locally riddled now. Till the momenfp=a,, where the
the soft branch are at.=3.29 anda,=4.26; these points are boundary of the basin of attraction and the attracting area
outside the scope of our plot. Obviously, the two branches otollides at a period-2 orbit, the points escaping from the

TABLE |. Four scenarios of blowout bifurcations.

Scen Examole of Para Attra. Basins Attra. Basins
: P " A,<O A, <0 A, >0 A, >0
1 a=0 y=0 glob. ridd. by+e  y=—cr glob. ridd. by + o
p.=2.718 - nad. - nad.
a=04 _ . L
2 p.—1.357 y=0 loc. ridd. y=-—c¢C y>0 & y<O0
a=0.5 _ . y=+cC y>0
3 p.=1.103 y=0 loc. ridd. y=—c’ y<0
4 a=07 y=0 glob. ridd. by+c y=+c¢ y=0

p.=0.635 y=+c y=—¢' y<0
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FIG. 3. One-side riddled basin for the came 0.0, (a) p=2.3 before andb) p=2.75 after the blowout bifurcation. The attractor is

marked by black+ and its basin of attraction is marked by gray dots.

vicinity of the ISS can go to another attractor at infinity and attractor there. This scenario of the blowout bifurcation can

the basin of attraction for the chaotic attractor on the ISS i%e observed for &€a<0.31.

globally riddled in this casgsee Fig. 8)]. It is important to For 0.62<a< 1.0, another scenario of the blowout bifur-
keep in mind that the collision only happens on the halfcation can be observed. As an example, we fix the parameter
planey,>0. The points on the negative half plap& 0 still a=0.7 and increase the value jpfsee Fig. 4 The basin of

have no possibility to go to another attractor except the onattraction of the attractor on the 1SS becomes locally riddled
on the ISS. So, the basin of attraction of the chaotic attractossp crosses the lin@+p=1.0 for the riddling bifurcation.

on the ISS is globally riddled from one sidg>*0) and At p=0.458, a chaotic attractor and a chaotic saddle appear
locally riddled from another sidey(<0). We call it aone-  simultaneously through aaddle-node-likebifurcation [18]

side riddled basin. With further increase @f the chaotic in the half plang/>0. After that, the basin of the attractor on
attractor on the 1SS becomes transversely unstabfe=s  the ISS is globally riddled by that of the newly appeared
=2.7183....This is the blowout bifurcation. Beyond this chaotic attractor on the half plang>0, while it is only
bifurcation, the chaotic attractor expands its size in yhe locally riddled on the other face of the ISS. Here we have
<0 direction, while the ISS keeps to be a part of its bound-again the one-side riddled basin. Beyond the blowout bifur-
ary. Since the ISS becomes transversely unstable, almost a@htion ata=0.63, the chaotic attractor on the ISS becomes
points in its vicinity will locally escape. Due to the crisis at transversely unstable and it expands its size in the half plane
p=a,, a part of points in the half plane>0 can be mapped y<0. All points in the half plangz<0 go to this new attrac-

to the negative plang<0 after their escaping from the vi- tor, while those in the half plang>0 go to the attractor that
cinity of the ISS. Now, in the positive half plane, there is aappeared through the saddle-node-like bifurcation. For other
dense set of points which escape to infinity, and there is alsgalues of parameters anda, the other two scenarios of the

a dense set of points which go to the attractor in the negativelowout bifurcation can be observed. Details about them will
half plane. Both of these sets contact the ISS, which is pafbe given elsewhere.
of the contour of the attractor in the negative plane. So, we Now we propose an experiment where this one-side rid-
say that its basin is globally riddled by that of the attractor atdling can be observed. The experimental system is a gravi-
infinity. Or, in another words, the one-side globally riddled tationally buckled, amorphous magnetoelastic ribbon driven
basin is maintainedeyondthe blowout bifurcatiorjsee Fig.  parametrically by a time-varying magnetic figlsee Fig. 5.
3(b)]. This globally riddled basin exists till the crisis pt It has been used in the experimental study of chaos control,

=ags, Where the attractor in the half plage<0 in the vicin-
ity of the ISS ceases to exi$i7]. So, here the globally

riddled basin exists in a large parameter regimyondthe

blowout bifurcation. We emphasize that the riddled basin
here has some difference as compared to the convention ,,|
case: First, it is in the desynchronization region beyond the
blowout bifurcation, while the riddled basin is convention-
ally related to the weak synchronization region below the- 10|
blowout bifurcation. Second, the dynamical behaviors are
different. Consider a small vicinity of the ISS. For conven-

tional riddling, a set of finite measure in this region will 0.0
escape and the measure of this set approaches zero as
size of vicinity decreases to zero. In our case, almost al

points will escape and the measure of the escaping points 19,
1 even when the size of the vicinity approaches zero. How

06
p
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ever, due to the global nonlinearity, a part of them will be  FIG. 4. Bifurcation diagram of the case af=0.7. That of the
mapped to the negative half plane and finally evolves to thdixed pointx,=1 is also plotted to guide eyes.



RAPID COMMUNICATIONS

R4512 H. L. YANG PRE 62
Ribbon nonbuckled state witly=0, which is an ISS of the studied
\ system, contains a chaotic attractor. Also, a two-layer ribbon
with the two layers of the different stiffness or magnetoelas-

tic properties should be used instead of the original symmet-
ric one. This replacement will not destroy the nonbuckled
state (the 1SS, but will introduce some asymmetry in this
system. Due to this asymmetry, it is expected that the loss of
transverse stability of the nonbuckled state on the ISS corre-
sponds to the transcritical bifurcation. Thus the one-side
riddled basin reported in this paper can be observed in this
proposed experiment.

In conclusion, we would like to outline the principal re-
sults of this paper. We demonstrated that in a system with a
lower level of symmetry compared to other systems formerly
used in the studies of riddled basins, a different type of
riddled basin(the one-sideriddled basin, is observed where

FIG. 5. Experimental configuration. The ribbon consists of twothe attractor on the ISS is globally riddled from one face
layers of different magnetoelastic properties. The vertical {0 while it is locally riddled from another face. This one-side
is modulated chaotically. riddled basin can even persiseyondthe blowout bifurca-

tion. This gives the first example where a globally riddled
trajectory targeting, crisis induced intermittency, noise-basin can be observed after the blowout bifurcation for an
induced crisis, strange nonchaotic attractor, and stochastitractor off the ISS. Due to the low level of symmetry
resonancéd19]. The critical heighth., at which a vertical needed, it is expected that this different type of riddled basin
column will buckle depends on its stiffness. By changing thecan be observed more commonly. We also proposed an ex-
value of the vertical fielH, the Young modulusE(H), of ~ periment where this phenomenon is expected to be observed.
the ribbon can be altered, thereby setting the valuén of
alternately greater than and less than the actual height of the H.L. Yang acknowledges support from the Alexander von
ribbon. Here we suggest to use a chaotically varying verticaHumboldt Foundation and thanks A.S. Pikovsky and M.
field H(t) to modulate the stiffness of the ribbon. So, the Zaks for the discussion.

H(t)
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