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One-side riddled basin below and beyond the blowout bifurcation
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In this Rapid Comunication we report a phenomenon of aone-sideriddled basin where one side of the basin
of attraction of an attractor on an invariant subspace~ISS! is globally riddled, while the other side is only
locally riddled. This kind of basin appears due to the symmetry breaking with respect to the ISS. This one-side
riddled basin can even persistbeyondthe blowout bifurcation, contrary to the previously reported riddled
basins which exist onlybelowthe blowout transition. An experimental situation where this phenomenon can be
expected is proposed.

PACS number~s!: 05.45.Ac, 05.45.Ra, 05.45.Xt
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Recently, systems with an invariant subspace~ISS! at-
tracted a lot of research interest@1–10#. The existence of an
ISS typically requires that the system has some kind of s
metry. A situation where a symmetry can appear naturall
the synchronization of coupled identical chaotic units. T
synchronization phenomena have been extensively studie
the context of laser dynamics, electronic circuits, chem
and biological systems, and secure communication. C
plete, generalized, phase, and lag synchronizations of cha
oscillators have been described theoretically and obse
experimentally@1–12#.

For systems possessing an ISS, a central question is
transverse stability of the ISS, i.e., whether an orbit start
from the vicinity of ISS will finally approach it or diverge
from it. A quantity measuring this stability is the transver
Lyapunov exponent~TLE!, which measures the growth ra
of transverse perturbations. If the TLE is negative, a tra
verse perturbation will decrease gradually and the ISS
transversely stable. Otherwise, it is unstable. The prob
turns out to be quite complex when there is a chaotic att
tor on the ISS, since the value of TLE depends in a fu
mental way on the choice of an invariant measure on
attractor @13#. It is known that invariant measures are n
unique for a chaotic attractor due to the fact that there
uncountably many unstable periodic orbits~UPOs! embed-
ded in it @14#. Corresponding to each UPO, there is an
variant measure whose support is on this orbit. To each
variant measure corresponds a TLE. In general, all of th
TLEs have different values. With a change of some~normal!
parameter@5#, e.g., the coupling strength for the coupled sy
tems, these TLEs will change their signs at different valu
of the parameter. The point where themaximalTLE crosses
zero is called a riddling bifurcation@6#. Below this bifurca-
tion, the attractor on ISS is asymptotically stable and
coupled systems are strongly synchronized. After this bif
cation, it is only an attractor in the sense of Milnor@2,15#,
i.e., a dense set of points escape from its vicinity. Its basin
attraction can be locally or globally riddled depending on
global dynamic of the system@4,5,9#. We have the weak
synchronization in this region. The parameter value wh
L' , which corresponds to the natural measure of the wh
chaotic attractor, is equal to zero is called a blowout bif
cation @4#. Beyond it, the whole chaotic attractor on the IS
becomes unstable in average and the coupled chaotic
become desynchronized.
PRE 621063-651X/2000/62~4!/4509~4!/$15.00
-
is
e
in
l
-

tic
ed

the
g

-
is
m
c-
-
e

t
re

-
n-
se

-
s

e
r-

f
e

e
le
-

its

A UPO on an ISS can lose its transverse stability throu
various local bifurcations. Possible candidates are pitch-f
@6#, period-doubling@8,9#, transcritical, or Hopf bifurcations
@10#. All of these cases have been reported except
transcritical one@11#. In the previous studies of the riddle
basin, the systems used are of much stronger symmetry
is necessary for the existence of an ISS. For example, in
case of chaos synchronization, symmetric coupling is usu
used while using of identical chaotic units is already enou
to produce an ISS, independently on the coupling method
this Rapid Communication, we address the situation wh
the unnecessary symmetry is released. To illustrate our fi
ing, we use a simple two-dimensional map which posses
an ISS while the whole system is asymmetric with respec
this ISS. Due to this asymmetry, the periodic saddles emb
ded in a chaotic attractor in the ISS lose their transve
stability through transcritical bifurcation. We found that th
basin of attraction of the chaotic attractor on the ISS can
globally riddled from one face while only locally riddle
from another face. This type of riddled basin can even
maintainedafter the blowout bifurcation.

We consider the following general class of dynamical s
tems popularly used in the literatures@6,7#:

xn115 f ~xn!1~high-order terms inyn!,
~1!

yn115g~xn ,p!yn1~high-order terms inyn!.

In the former works@6,7#, only odd powers ofyn were
present on the right-hand side of the second equation in
~1!. In that case, the system has the symmetryy→2y. The
symmetry y→2y is appropriate for the coupled chaot
units when the coupling is symmetric@8,9#. Obviously, this
symmetry is not necessary for the presence of the ISSy50.
So, we would like to include the even powers ofyn and
release this symmetry. For simplicity and easiness of ill
tration, a two-dimensional version of Eq.~1! is used,

xn1152x~mod 1!1qyn
2 ,

~2!
yn115~pxn1a!yn~11byn2cyn

2!,

wherep, q, a, b, andc are positive real constants.
For any choice of the control parameters, we haveyn

50 for n.1 if y050, i.e., yn50 is an ISS of the whole
R4509 ©2000 The American Physical Society
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system. On this ISS, the system possesses a chaotic attr
from the Bernoulli shift mapf (x)52x(mod 1). Throughout
this paper, the valuesq50.001,b50.5, andc50.3 are kept
fixed anda andp are used as control parameters..

Let us first briefly review the dynamics in the casep50
~Fig. 1!, where the dynamics of the variableyn becomes
uncoupled from that ofxn . With increasing of the paramete
a, the fixed pointyn50 loses its stability through a transcrit
cal bifurcation atab51.0. In the regiony,0, another stable
fixed point branches off smoothly fromy50 at the transcriti-
cal bifurcation. This is the soft branch. In the regiony.0, a
pair of fixed points appears simultaneously ataa50.83, i.e.,
prior to the loss of the stability ofy50 ata51.0. This is the
hard branch. In the parameter interval@aa ,ab#, the system
has two coexisting attractors. One can observe hyster
when changing the parametera in different directions. At
ag51.697, the second iteration of the critical point@16# y*
51.747 on the hard branch, which is one of the maxim
points ofg(y)5ay(11by2cy2), collides withy50 which
is on the boundary separating the basins of attraction of
attractors in the regionsy.0 andy,0. Beyond this point,
all the trajectories starting from the regiony.0 will finally
enter the regiony,0; the attractor on the hard branch ceas
to exist. Atad51.847, the first iteration of the critical poin
y* collides with the unstable period-2 orbit which is on t
boundary between the finite attractor and the attractor a
finity. After that, trajectories starting from the regiony.0
will escape eventually to infinity. Similar boundary crises f
the soft branch are atae53.29 andaz54.26; these points are
outside the scope of our plot. Obviously, the two branche

FIG. 1. Bifurcation diagram for the case ofp50: yn11

5g(yn)5ayn(11byn2cyn
2).
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the transcritical bifurcation are asymmetrical with respect
y50. It is just this asymmetry that leads to the one-s
riddled basin described below. This low level of symme
~or say degeneracy! also implies that the one-side riddle
basin is expected to be observed more commonly in cont
to other cases of riddled basin.

The TLE of the chaotic attractor on the ISS is gi
en by L'5*0

1 lnupx1aur(x)dx5*0
1 lnupx1audx51/p(p ln p

2a ln a2p1a). The blowout bifurcation occurs asL'50,
which defines the curvep ln p2a ln a2p1a50 in the param-
eter plane (p,a) ~see Fig. 2!. When changing the paramete
p anda, four different scenarios of blowout bifurcations ca
be found in this system. The attractors and their basins
fore and after the bifurcations are listed in Table I.

To give an example of the first scenario, let us fix t
parametera50 and increasep. For p,1, all the UPOs em-
bedded in the chaotic attractor on ISS are stable in the tr
verse direction. The chaotic attractor is asymptotically sta
in this case. Asp is increased larger thanab51.0, the fixed
point xn51 in the ISS becomes unstable in the transve
direction and a series of tonguelike structures open at
fixed point and its preimage. Points in these tongues
escape from the vicinity of the ISS. But they will finall
return there due to the global nonlinearity of the system. T
basin of attraction of the chaotic attractor on the ISS is o
locally riddled now. Till the momentp5ad , where the
boundary of the basin of attraction and the attracting a
collides at a period-2 orbit, the points escaping from t

FIG. 2. Phase diagram for the two-dimsensional system.
curvesbl, rd, and sn are for the blowout, riddling, and saddle
node-like bifurcations, respectively.
TABLE I. Four scenarios of blowout bifurcations.

Scen. Example of Para.
Attra.
L',0

Basins
L',0

Attra.
L'.0

Basins
L'.0

1
a50

pc52.718
y50 glob. ridd. by1` y52c8 glob. ridd. by1`

2
a50.4

pc21.357
y50 loc. ridd. y52c8 y.0 & y,0

3
a50.5

pc51.103
y50 loc. ridd.

y51c
y52c8

y.0
y,0

4
a50.7

pc50.635
y50

y51c
glob. ridd. by1c

y51c
y52c8

y.0
y,0
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FIG. 3. One-side riddled basin for the casea50.0, ~a! p52.3 before and~b! p52.75 after the blowout bifurcation. The attractor
marked by black1 and its basin of attraction is marked by gray dots.
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vicinity of the ISS can go to another attractor at infinity a
the basin of attraction for the chaotic attractor on the ISS
globally riddled in this case@see Fig. 3~a!#. It is important to
keep in mind that the collision only happens on the h
planeyn.0. The points on the negative half planey,0 still
have no possibility to go to another attractor except the
on the ISS. So, the basin of attraction of the chaotic attra
on the ISS is globally riddled from one side (y.0) and
locally riddled from another side (yn,0). We call it aone-
side riddled basin. With further increase ofp, the chaotic
attractor on the ISS becomes transversely unstable atp5e
52.718 28 . . . . This is the blowout bifurcation. Beyond thi
bifurcation, the chaotic attractor expands its size in they
,0 direction, while the ISS keeps to be a part of its boun
ary. Since the ISS becomes transversely unstable, almo
points in its vicinity will locally escape. Due to the crisis
p5ag , a part of points in the half planey.0 can be mapped
to the negative planey,0 after their escaping from the vi
cinity of the ISS. Now, in the positive half plane, there is
dense set of points which escape to infinity, and there is
a dense set of points which go to the attractor in the nega
half plane. Both of these sets contact the ISS, which is
of the contour of the attractor in the negative plane. So,
say that its basin is globally riddled by that of the attractor
infinity. Or, in another words, the one-side globally riddle
basin is maintainedbeyondthe blowout bifurcation@see Fig.
3~b!#. This globally riddled basin exists till the crisis atp
5ad , where the attractor in the half planey,0 in the vicin-
ity of the ISS ceases to exist@17#. So, here the globally
riddled basin exists in a large parameter regionbeyondthe
blowout bifurcation. We emphasize that the riddled ba
here has some difference as compared to the convent
case: First, it is in the desynchronization region beyond
blowout bifurcation, while the riddled basin is conventio
ally related to the weak synchronization region below
blowout bifurcation. Second, the dynamical behaviors
different. Consider a small vicinity of the ISS. For conve
tional riddling, a set of finite measure in this region w
escape and the measure of this set approaches zero a
size of vicinity decreases to zero. In our case, almost
points will escape and the measure of the escaping poin
1 even when the size of the vicinity approaches zero. Ho
ever, due to the global nonlinearity, a part of them will
mapped to the negative half plane and finally evolves to
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attractor there. This scenario of the blowout bifurcation c
be observed for 0,a,0.31.

For 0.62,a,1.0, another scenario of the blowout bifu
cation can be observed. As an example, we fix the param
a50.7 and increase the value ofp ~see Fig. 4!. The basin of
attraction of the attractor on the ISS becomes locally ridd
asp crosses the linea1p51.0 for the riddling bifurcation.
At p50.458, a chaotic attractor and a chaotic saddle app
simultaneously through asaddle-node-likebifurcation @18#
in the half planey.0. After that, the basin of the attractor o
the ISS is globally riddled by that of the newly appear
chaotic attractor on the half planey.0, while it is only
locally riddled on the other face of the ISS. Here we ha
again the one-side riddled basin. Beyond the blowout bif
cation ata50.63, the chaotic attractor on the ISS becom
transversely unstable and it expands its size in the half p
y,0. All points in the half planey,0 go to this new attrac-
tor, while those in the half planey.0 go to the attractor tha
appeared through the saddle-node-like bifurcation. For o
values of parametersp anda, the other two scenarios of th
blowout bifurcation can be observed. Details about them w
be given elsewhere.

Now we propose an experiment where this one-side
dling can be observed. The experimental system is a gr
tationally buckled, amorphous magnetoelastic ribbon driv
parametrically by a time-varying magnetic field~see Fig. 5!.
It has been used in the experimental study of chaos con

FIG. 4. Bifurcation diagram of the case ofa50.7. That of the
fixed pointxn51 is also plotted to guide eyes.
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trajectory targeting, crisis induced intermittency, nois
induced crisis, strange nonchaotic attractor, and stocha
resonance@19#. The critical height,hc , at which a vertical
column will buckle depends on its stiffness. By changing
value of the vertical fieldH, the Young modulus,E(H), of
the ribbon can be altered, thereby setting the value ofhc
alternately greater than and less than the actual height o
ribbon. Here we suggest to use a chaotically varying vert
field H(t) to modulate the stiffness of the ribbon. So, t

FIG. 5. Experimental configuration. The ribbon consists of t
layers of different magnetoelastic properties. The vertical fieldH(t)
is modulated chaotically.
r-

ni

-

.

-
tic

e

he
al

nonbuckled state withy50, which is an ISS of the studied
system, contains a chaotic attractor. Also, a two-layer ribb
with the two layers of the different stiffness or magnetoel
tic properties should be used instead of the original symm
ric one. This replacement will not destroy the nonbuckl
state~the ISS!, but will introduce some asymmetry in thi
system. Due to this asymmetry, it is expected that the los
transverse stability of the nonbuckled state on the ISS co
sponds to the transcritical bifurcation. Thus the one-s
riddled basin reported in this paper can be observed in
proposed experiment.

In conclusion, we would like to outline the principal re
sults of this paper. We demonstrated that in a system wi
lower level of symmetry compared to other systems forme
used in the studies of riddled basins, a different type
riddled basin~the one-sideriddled basin!, is observed where
the attractor on the ISS is globally riddled from one fa
while it is locally riddled from another face. This one-sid
riddled basin can even persistbeyondthe blowout bifurca-
tion. This gives the first example where a globally riddl
basin can be observed after the blowout bifurcation for
attractor off the ISS. Due to the low level of symmet
needed, it is expected that this different type of riddled ba
can be observed more commonly. We also proposed an
periment where this phenomenon is expected to be obser

H.L. Yang acknowledges support from the Alexander v
Humboldt Foundation and thanks A.S. Pikovsky and
Zaks for the discussion.
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